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ABSTRACT 

 
The length-biased version of the Weibull distribution known as Weibull length-

biased (WLB) distribution is considered, it is shown that it is unimodal throughout 
examining its shape. Other properties of the distribution were studied such as the 
moments, and the hazard rate function. It is shown that the hazard function is upside 
bathtub shaped for values of the shape parameter that are less than unity and increasing 
otherwise. Bayesian and non Bayesian estimation problems are also considered. a 
numerical example is introduced for illustration. 
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1- INTRODUCTION 
 

       The concept of weighted distribution can be traced to Fisher in his paper “The study 

of effect of methods of ascertainment upon estimation of frequencies” in 1934; while this 

of length-biased sampling was introduced by Cox 1962 (see Patill 2002). These two 

concepts find various applications in biomedical area such as family history and disease, 

survival and intermediate events and latency period of AIDS due to blood transfusion 

(Gupta and Akman 1995). The study of human families and wildlife populations was the 

subject of an article developed by Patill and Rao (1978). Patill, et al. (1986) presented a 

list of the most common forms of the weight function useful in scientific and statistical 

literature as well as some basic theorems for weighted distributions and size-biased; as 

special case they arrived at the conclusion that the length-biased version of some mixture 
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of discrete distributions arises as a mixture of the length-biased version of these 

distributions. Gupta and Tripathi (1990) studied the error made if an ordinary distribution 

is used instead of the length-biased version, this error was named as type III error or 

modeling error by Rao (Gupta and Tripathi (1990)). They derived a general form for this 

error when the random variable under study follows a wide class of discrete distributions 

known as modified power series distribution. The results were applied to study the family 

history and diseases using the Poisson and the generalized Poisson distributions. Gupta 

and Tripathi (1996) studied the weighted version of the bivariate three-parameter 

logarithmic series distribution, which has applications in many fields such as: ecology, 

social and behavioral sciences and species abundance studies. They first derived the 

weighted version of this distribution and gave an explicit form for the probability mass 

function and the probability generating function in the length-biased case.  

             Much work was done to characterize relationships between original distributions 

and their length biased versions.  A table for some basic distributions and their length 

biased forms is given by Patill and Rao (1978) such as Lognormal, Gamma, Pareto, Beta 

distribution.  Khatree (1989) presented a useful result by giving a relationship between 

the original random variable X and its length-biased version Y, when X is either Inverse 

Gaussian or Gamma distribution. He showed that the length-biased random variable Y 

can be written as a linear combination of the original random variable X and a chi-square 

random variable Z and inversely the original random variable can be characterized 

through this relationship. Relationships in the context of reliability were treated by 

several authors such as Patill et al. (1986), Jain et al. (1989), Gupta and Kirmani (1990) 

and recently by Oulyed and George (2002); In these works the survival function, the 

failure rate, and the mean residual life function of the length-biased distribution were 

expressed in relation with these of the original distribution.  

              Weibull distribution plays an important role in life testing and reliability studies. 

It was introduced by the Swedish scientist Wallodi Weibull in 1951 (Kapur and Saxena 

2001). If X is a random variable having the Weibull distribution, its pdf takes the form: 

0,0,0)exp()( 1 >>≥−= − θβθβθ ββ xxxxg                                                                   (1-1) 
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Where: β is the shape parameter and θ scale parameter. The Weibull distribution is very 

flexible and this is due to its ability in modeling both increasing ( 1>β ) and decreasing 

( 1<β ) failure rates. The Weibull distribution has the following rth moment: 
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        In this pa per the length-biased version of the weibulll distribution is considered 

which has many applications in forestry and life testing. Let T be a non negative random 

variable, T is said to have the Weibull length-biased distribution – it will be abbreviated 

as WLB – if its density function is given by: 
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The density (1-3) can be obtained by combining the definition of the length- biased 
distribution given by: 
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tE
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and the density of the original distribution (1-1). This distribution can be explained as 
follows: Suppose that the lifetimes of a given sample of items is Weibull and that the 
items doesn’t have the same chance of being selected but each one is selected according 
to its length or life length  then the resulting distribution is not Weibull but Weibull 
length-biased. 
It can be noted that (1-3) is a generalized gamma as defined by Stacy (1962) with 

parameters 11,,
1

+==
−

β
θηβ β k .The WLB distribution includes the gamma 

distribution (β=1) as special case. The reliability function of the WLB distribution is 
given by:  
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The numerator represents the incomplete gamma function defined as: 

∫ −−=
x
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1),(γ                                                                                                 (1-6) 

The rth moment associated with (1-3) is: 
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The same result can be obtained by using the moments of the original distribution 
(Weibull) via the following relationship: 
 

∫ ∫
∞ ∞ +

+ ===
0 0

1
1

)(
)()(.

)(
1)()(

XE
XEdttgt

XE
dttftTE

r
rrr                                                            (1-8) 

 
The rest of the paper is organized as follows: the shape of the WLB distribution and its 
hazard rate function are studied in sections two and three respectively. Bayesian and non 
Bayesian estimation problems are considered in section four. A numerical example is 
given in section five to illustrate the above methods.  

 
2- THE SHAPE: 

 
The shape of the density function given in (1-3) can be clarified by studying this 

function defined over the positive real line [0, ∞] and the behavior of its derivative as 
follows: 
  
2-1- Limits and derivatives of the function 
 
We have: 
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Secondly we study the derivative, since the function f(t) and its logarithm are maximized 
at the same point and in order to simplify calculations we will take the derivative of the 
logarithm of the function f(t) given by 
 

θ
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θββ β ln)11()1(lnlnln2))(ln( ++Γ−−+= tttf                                                                 (2-3) 

Taking the derivative of this function with respect to t yields: 
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t
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Equating this derivative to zero gives: 

0

1

00 βθ −=t                                                                                                                     (2-4) 

Then the derivative is equal zero at t0, negative for values of t that exceed t0 and positive 
otherwise. To verify if the point (θ0 , β0) is a maximum or minimum, the second 
derivative of f(t) with respect to t is derived which is equal to: 
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This quantity is negative for all values of t.  From the above results the function f (t) 
increases it takes its maximum at t0 then it decreases again. The following figure 
illustrates some of the possible shapes of the density f(t) for specified values of β. The 
scale parameter θ was taken to be unity since it doesn’t influence the shape of this 
function.  
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Figure 1: The density function of the WLB distribution 
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The shape of the distribution can be studied in more details using the following two 
coefficients. 
 
2-2- Coefficient of skewness: 
 

Denote it by , the coefficient of skewness enables us to know if the distribution 
under study is symmetric or not, it is defined by: 

Sk

3
3

σ
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=Sk                                                                                                                       (2-6) 

Where: µ3 is the third moment about the mean and σ is the standard deviation of the 
distribution. The skewness is zero for symmetrical distributions, positive for skewed right 
distributions, and negative if the distribution is skewed to the left (Frank and Althoen, 
1994) this means that the sign of the coefficient indicates the direction of the skew. From 
equation (2-1) for r=1, 2, 3 and equation (2-3). Replacing them in equation (3-6) gives: 
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It can be noted from (3-7) that the coefficient of skewness of the WLB distribution 
doesn’t depend on the scale parameter θ, and it is function of the shape parameter β only 
then we can write it as )(βSk . Numerical investigation of )(βSk  indicates that the WLB 

distribution is symmetric for β=3.448 -at this point the mean is equal to the median -, 
positively skewed with a tail to the right for values (β<3.448), and negatively skewed 
with a tail to the left for (β>3.448). In practice more attention is given to the first case 
(i.e. for β<3.448).  
 
2-3- Coefficient of kurtosis: 
 

Denote it by , the coefficient of kurtosis measures the flatness of the top and 
it is defined by: 

Kur
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σ
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The kurtosis is equal zero for the normal distribution, positive for the more tall and slim 
curves than the normal one in the neighborhood of the mode, in this case the distribution 
is said to be leptokurtic. It is negative for platykurtic distributions (i.e. flatter than the 
normal distribution). Using the moments from (2-1) and the variance from (2-3) the 
coefficient of kurtosis for the WLBD is given by: 
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Kur is also a function on the parameter β only and it can be written as )(βKurKur=  , the 
Kurtosis is positive for values of the shape parameter that are (β ≤ 2.164 or β > 5.455) 
then the WLB distribution’s curve is leptokurtic (thin), it is platycurtic for (2.164 ≤ β < 
5.455) since the coefficient is negative for this case. It is near zero in the neighborhood of 
each of the two points.  
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3-HAZARD RATE FUNCTION 
 

The hazard rate function is defined by the ratio ( )))(1/()( tFtf −  , it takes the form: 
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In order to study the behavior of this hazard rate we apply results of Glaser (1980) given 
in the form of lemma (3-1). 
Lemma (3-1): 

Let T be a continuous random variable with twice differentiable density 

function . Define the quantity )(tf
)(
)()(

tf
tft

′
−=η , where )(tf ′ denote the first derivative 

of the density function with respect to t. suppose that the first derivative of )(tη -named 
)(tη′ - exists. Glaser gave the following results (for more details see Glaser (1980)). 

1- If 0)( <′ tη , for all t>0, then the hazard rate is monotonically decreasing failure rate   

    (DFR). 
2- If 0)( >′ tη , for all t>0, then the hazard rate is monotonically increasing failure rate 

    (IFR). 
3- If there exists t0, such that  0)( >′ tη  for all (0 < t < t0); 0)( 0 =′ tη  and 0)( <′ tη for  
    all (t>t0). In addition to that lim 0)(

0
=

→
tf

t
; then the hazard rate is upside down   

    bathtub shaped (UBT).  
4- If there exists t0, such that  0)( <′ tη   for all 0<t<t0; 0)( 0 =′ tη  and 0)( >′ tη for  
    all t>t0. Adding to that ∞=

→
)(lim

0
tf

t
.it consequences that the hazard rate is  

    bathtub shaped (BT).  
For WLB distribution we begin by computing the quantity )(tη ; by first taking the 

derivative of the density function given in (1-3) with respect to t which is given by: 
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Dividing both sides of the equation (3-2) by the measure ( )(tf− ) we obtain: 

( 1)( −= βθ )βη t
t

t , taking its derivative with respect to t yields: 

( βθβ )βη t
t
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According to the values of the shape parameter β: 
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1- For ,1<β  it is easily seen that the third part of the lemma follows; where t0 is 
solution of ( ) ββθη

1

00 )1(0)( −−=⇒=′ tt . It results that the hazard rate is UBT 

shaped. 
2- For 

2

1)(,1
t

t =′= ηβ , which is strictly positive function for all values of t. It 

results from the lemma (4-1) that  is IFR, in this case also the WLBD reduces 

to gamma distribution with parameter (

)(th

211
=+=

β
k ) with an increasing hazard 

rate.  
3- For 0)(,1 >′> tηβ  for all t, then the hazard rate is monotonically increasing (IFR); 

this agrees with the theorem given in Gupta and Kirmani (1990) which indicated 
that the length-biased version preserves the IFR property of the original random 
variable. 

These results can be summarized through the following theorem: 
 
Theorem (3-1):  

 
let T be a non negative random variable having the Weibull length-biased 

distribution; then its hazard rate  h  is IFR for values of the shape parameter that are 

greater or equal one (β ≥1), and UBT otherwise –it means for (0 < β < 1). 

)(t

 
The shapes of the hazard rate of the WLB distribution for special values of the 

shape parameter β are illustrated in figure (2), the scale parameter θ was taken to be the 
unity since it doesn’t influence the shape of the hazard rat 
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Figure 2: The Hazard rate of the WLB distribution for given values of β 
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4-ESTIMATION 

 
In this section estimates of the two parameters of the WLB distribution and the 

reliability function are obtained by the method of moment, maximum likelihood method, 
and Bayesian and approximate Bayesian method -using Lindley’s expansion- assuming 
independent non-informative prior for each parameter. 
 

4-1- Moment estimates 
 

     This method follows by equating the population moments from (1-7) to the sample 
moments this yields the following system of two equations: 
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Solving this system will yield  the moment’s estimates of θ and β respectively. 

These estimates are generally used as initial values for the maximum likelihood method 
when no closed form exists for the MLE and the normal equations needs to be solved 
iteratively. Replacing these estimates in the formula of the reliability (1-5) yields: 

**,βθ
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This estimate can be called the moment estimate of the reliability function.  
 
4-2- Maximum likelihood estimates (MLE): 
 
 Suppose that a sample was drawn from (1-3), then the logarithm of the likelihood 
is given by:  
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Differentiating (4-3) with respect to θ and β in turns and equating the derivatives to zero, 

we get the following normal equations: 
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Where the Psi-function Ψ  is defined as the derivative of the logarithm of the gamma 

function with respect to a. (see the Handbook of Mathematical Functions 1970, page 
259) 
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The Psi-function is known as digamma function which can be approximated by: 
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The system (4-4-a), (4-4-b) can be reduced to only one equation by extracting  from 
the first equation: 
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And replace it in the second one i.e. equation (4-4-b), we obtain: 
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This nonlinear equation doesn’t seem to have a closed form solution and must be solved 
iteratively to obtain the estimate of the shape parameter which will be replaced in (4-7) to 
get the MLE of the scale parameter θ. Or the system of the two equations can be solved 
simultaneously. The asymptotic expected variance-covariance matrix of the estimates can 
be obtained by inverting the information matrix (see the Appendix) with elements that are 
negatives of the expected values of the second derivatives of the likelihood function with 
respect to the parameters θ and β: 
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Where  is the derivative of the digamma function, it can be approximated by taking 
the derivative of (4-6), and 
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),( azξ  is Rieman’s zeta function (see Gradshteyn and 

Ryzhik (1965), pages:1072-1073) it is defined by: 
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By replacing z and a by their values or formula we get: 
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Then the variance-covariance matrix of the estimates of the parameters can be obtained 
by inverting the information matrix as follows: 
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An observed variance-covariance matrix can be obtained also by replacing the MLE in 
the information matrix and inverting it without taking expectations.    
4-2-1- Special cases: 

 
If one of the two parameters is known we have the following results: 

1- If the shape parameter β is known, the MLE of the scale parameter θ is given by: 
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2- If the scale parameter θ is known the MLE of the shape parameter can be obtained by 
solving equation (4-4-b) after replacing  by θ and its variance is obtained by inverting 
(4-9-c) and replacing   by θ too. 

θ̂
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5-2-2- Maximum likelihood estimate of the reliability function 

 

      The reliability function can be regarded as a parameter and it needs to be estimated. 

Using the invariance property of the maximum likelihood method, the MLE R̂  of the 

reliability R can be obtained by replacing , the maximum likelihood estimates of βθ ˆˆ and

βθ and  in the formula (1-5) it is given by  
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Using Taylor expansion of order one about the parameter estimates of  R̂  we can write: 
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By taking the expectation of the above formula and from the properties of the MLE, it 

results that R̂  is asymptotically unbiased estimate of R with variance:  
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     Where the variances and covariances of the maximum likelihood estimates of the 
parameters were given in the matrix (4-12). 
 
4-3- Bayes estimates: 
 

Suppose that a little information is available about the parameters, and then the 
appropriate prior for this case assuming independence is: 
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∝ : being the sign of proportionality. Using Bayes theorem which combines the 
likelihood function with the prior given in (4-16), we obtain the following joint posterior: 
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Using a squared error loss function the Bayes estimates of any function of parameters is 
its posterior expectation given by: 
 

∫

∫

Ω

Ω=
ηηπ

ηηπη
η

dt

dtu
tuE

)/(

)/()(
)/)((                                                                                         (4-18)                              

Where η is a parameter which is in this case ( )θβη ,=  or it is equal to one of the two 
parameters if the other one is known, and Ω is the parameter space. When the analytical 
method is not attractable we refer to numerical integration to obtain the Bayes estimates. 
 
4-3-1- Bayes estimate of the scale parameter θ:  
 
Putting  θθβη == ),()( uu  in (4-18) and using the posterior in (4-17) we get the Bayes 
estimate of the scale parameter by a ratio of two integrals this means: 

1

2

0 0

0 0

)/,(

)/,(
)/(~

C
C

ddT

ddT
TE ===

∫∫

∫∫
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θθ                                                                          (4-19-a) 

 
Where C1 is the normalizing constant; it is given by: 
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                                              (4-19-c) 

The variance of the Bayes estimate of scale parameter θ can be obtained by applying the 
following formula: 
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The second posterior moment can be obtained by setting θθβη == ),()( uu in (4-18) and 
using the posterior in (4-17) this yield: 
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No closed form solutions have been found for the integrals in (4-19-b), (4-19-c) and (4-
19-f) when both parameters are unknown and numerical integration is necessary to 
evaluate them. If we suppose that the shape parameter β is known the integrals in (4-19-a) 
and (4-19-b) will admit closed form solutions, the Bayes estimate of the scale parameter 
and its variance are identical to those of the maximum likelihood method given by (4-13-
a), (4-13-b). 
 
4-3-2- The shape parameter β:  
 

Setting βθβη == ),()( uu  in (4-18) and using the posterior in (4-17) we get the 
Bayes estimate of the shape parameter by a ratio of two integrals this means: 
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The denominator C1 was given by equation (4-19-b) given in and the numerator is given 
by: 
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And  
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The variance of the Bayes estimate of the shape parameter β is then given by: 
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When the scale parameter θ is known, the integrals in (4-19-b), (4-20-b), (4-20-d) don’t 
have a closed form expression and will reduce to: 
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Then in both cases (θ known or unknown) numerical integration is necessary to evaluate 
these integrals. 
 
4-3-3- The reliability function: 
 
  Putting )(),()( tRuu == θβη in (4-18) and using the posterior in (4-17) we get 
the Bayes estimate of the shape parameter by a ratio of two integrals this means: 
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And its variance can be obtained from: 
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No closed form solutions exist for the integrals in (4-22-a) and (4-22-b) even if one of the 
two parameters is known, these integrals can be computed via numerical integration.  
 
4-4- Approximate Bayes estimates: 
 

When the integrals occurring in Bayesian analysis don’t admit closed form 
solution we refer to numerical integration to find a solution as it was suggested in the 
precedent section. Lindley (1980) gave an alternative method to approximate the integrals 
that occur in Bayesian statistics. The form of ratio of integrals considered by Lindley 
(1980) is as given bellow: 
 

∫
∫

ηηη

ηηη

dlv

dlw

))(exp()(

))(exp()(
                                                                                                (4-23) 

 
Where: ),,,( 21 mηηηη L= is the parameter, )(ηl  is the logarithm of the likelihood 
function and  are arbitrary functions of η. Let (.),(.) vw )()( ηπη =v the prior density of 
the parameter η, )()()( ηπηη uw =  and ))()( ln( ηπηρ = , the ratio in (4-25) will be the 
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posterior expectation of the function )(ηu  under squared error loss function and we 
write: 
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This ratio is equivalent to the ratio given in (4-18); The basic idea to evaluate it is to 
expand on Taylor series the functions involved in it about the maximum likelihood η̂  of 
η, this lead to the following formula, where the first term omitted is O : )( 2−n
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Where each suffix denotes differentiation once with respect to the variable having that 
suffix; this means: 
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of the variance covariance-matrix with elements that are the inverse of negatives of the 
second derivatives of the log likelihood with respect to the parameters.  All the quantities 
in (4-25) are to be evaluated at the MLE of θ and the summation run over all suffixes 
from one to m (the dimensionality of θ). Lindley (1980) gave the one–parameter and two-
parameter version of (4-25) as follows: 
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And for the two-parameter case: 
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All the quantities in (4-26-a) and (4-26-b) are to be evaluated at the MLE of the 
parameter η. All the needed results to get the approximate Bayes estimates are given in 
the appendix.  
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4-4-1- The scale parameter 
 

Putting θβθη == ),()( uu

1 12112

 in (4-24) we get the Bayes estimate of the scale 
parameter. Taking the derivatives of the function u(η) which respect to each parameter in 
turn yield: , 1 =u 022 ==== uuu u . Replacing these derivatives with the above 
results evaluated at the MLE of the parameters in (4-26-b) gives: 
 

θθθ ˆˆ~~
∆+≈                                                                                                                (4-27-a) 

                                                              
By the same way we put u  (which has derivatives2),()( θβθη == u θ21 =u , 22 =u ,  

) to get its posterior second moment.  0221211 === uuu
 

222 ˆˆ)/( θθθ ∆+≈tE                                                                                                   (4-27-b) 
 
If we suppose that the shape parameter β is known, the approximate Bayes estimate of the 
scale parameter and its variance are given by: 
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This means that the MLE, the Bayes and approximate Bayes estimates are identical and 
have the same variance. 
 
4-4-2- The shape parameter 
 
Setting  ββθη == ),()( uu  (which has derivatives 12 =u , 02212111 ==== uuuu )  in (4-
24)  gives the Bayes estimate of the shape parameter. Using the derivatives of the 
function u(η) and the results given in the appendix. Replacing them in (4-26-b) gives: 
 

  βββ ˆˆ~~
∆+≈                                                                                                             (4-28-a) 

                                                                 
and we  put also  u in order to obtain the variance, the derivatives of the function 
"u" in this case  are:  

2)( βη =
β22 =u , 222 =u , 012111 === uuu . This gives: 

 
222 ˆˆ)/( βββ ∆+≈tE                                                                                   (4-28-b) 

 
If we suppose that the scale parameter θ is known we get: 
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4-4-3- The reliability function: 
 
To find the estimate of the reliability function we set u )(),()( tRu == θβη in (4-24) (the 
derivatives of the reliability function are given in the appendix such that , 1R1u = 22 Ru = , 

, 1111 Ru = 122112 Ruu == , ) this yield: 2222 Ru =
 

)(ˆ)(ˆ)(
~~ tRtRtR ∆+≈                                                                                                      (4-29-a) 

 
To get the second posterior moment of the reliability function we put 

 the first and the second derivatives of this function are: u , 
, 
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111 2 += , ( )RRRRuu 12212112 2 +==  and ( )RRR 22

2
222 2 +=u  we get: 
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- If we suppose that the shape parameter is known we get: 
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Where  is the WLB density evaluated at the MLE of the unknown parameters. )(ˆ tf
 
- If the scale parameter is assumed to be known we get 
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5-NUMERICAL EXAMPLE 

     To illustrate the above formulas and methods the following data were taken from 
Gupta and Akman (1998), they represent million of revolutions to failure for 23 ball 
bearings in fatigue test:  

     17.880      28.920       33.000      41.520     42.120       45.600      48.480       51.840  

     51.960      54.120      55.560       67.800     68.640       68.640      68.880       84.120  

     93.120      98.640    105.120     105.840   127.920    128.040     173.400 

These data have been previously fitted assuming Weibull, lognormal, Inverse Gaussian 
and length-biased inverse Gaussian. The Kolmogorov-Smirnov test doesn’t reject that 
this data come from a WLB distributon.   Some properties of the sample were computed 
such as the mean 224.72=

926.0=

* 847.1 ×=θ

T , the variance V(T)=1.344×103, the Skewneess , 
and kurtosis ; from the values of these two last coefficients the distribution 
of this data is positive skewed right and leptokurtic. The parameters of the sample were 
estimated numerically since there was no closed form for them (except when β is known), 
the system (4-1-a) and (4-1-b) was solved numerically and yields the moment estimates 

, which were used as initial values for the normal 

equations in (4-4-a) and (4-4-b) to obtain the maximum likelihood estimates. Bayes and 
approximate Bayes estimates were also obtained and the results are given in the 
following table: 

008.1=Sk
Kur

and 3* 10562.1 −=β

                                                                   Table 1 

MLE, Bayes and approximate Bayes estimates of the parameters and their variances. 
               Estimates 

Parameters  
MLE1 BE2 ABE3 

θ 
1.768×10-3 

(6.741×10-6) 

2.037×10-3 

(2.652×10-6) 

3.443×10-3 

(3.937×10-6) 

β 
1.571 

(0.093) 

1.471 

(8.697×10-3) 

1.596 

(0.093) 
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* (.): Indicates the variance, 1: MLE: maximum likelihood estimates 2:BE: Bayesian estimates, 3: ABE: 

Approximate Bayes estimate.  

We observe that the estimates of the shape and the scale parameters are close and the 

Bayes one have the smallest variance for the two parameters. 

The reliability function was evaluated for certain values of time by both classical and 

Bayesian methods, the results are given in table 2 below: 

Table 2 

Moment, MLE, Bayes and approximate Bayes estimates of the reliability function with 

variances  
Estimates 

 

 

Time t 

)(* tR  

(moment estimate) 

)(ˆ tR  

(MLE) 

)(~ tR  

(Bayes estimate) 

)(
~~ tR  

(Approximate 

Bayes estimate) 

10 
0.992 

- 

0.992 

(2.487(-4))* 

0.976 

(1.976 (-3)) 

0.990 

(3.246(-5)) 

15 
0.979 

- 

0.979 

(1.834(-3)) 

0.949 

(8.534(-3)) 

0.974 

(1.812(-4)) 

20 
0.951 

- 

0.958 

(7.171(-3)) 

0.914 

0.018 

0.952 

(5.336(-4)) 

50 
0.694 

- 

0.695 

(0.253) 

0.649 

(0.082)) 

0.693 

(6.224(-3)) 

80 
0.370 

- 

0.370 

(0.502) 

0.405 

(0.089) 

0.380 

(6.464(-3)) 

100 
0.210 

- 

0.209 

(0.384) 

0.283 

(0.072) 

0.223 

(4.443(-3)) 

173 
0.012 

- 

0.011 

(8.534(-3)) 

0.065 

(0.016) 

0.019 

(1.185(-4)) 
*2.487(-4) = 2.487×10-4. 

From table (2) we observe that , )  and )(* tR (ˆ tR )(
~~ tR  are indistinguishable, while )(~ tR  

presents a slight difference.  The approximate method gives the smallest variances for all 

values of "t".  
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APPENDIX 
 The following results are useful to compute the approximate Bayes estimates 

 

A-1- The derivatives of the log likelihood function: 

 

       The log likelihood function of the WLB distribution was given in equation (4-3) in 

section four. The second derivatives of this function evaluated at the MLE are given by:  
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Taking the negatives of these quantities will give the observed information matrix which 
will be inverted to find the observed variance-covariance matrix with elements: 
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The third derivatives of the log likelihood function evaluated at the MLE’s are given by: 
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A-2- The derivatives of the logarithm of the prior function: 
   
The logarithm of the prior density is given by: 
 

βθβθπβθρ lnln)),(ln(),( −−==  
 
Differentiating this function with respect to each parameter in turn we get: 
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A-3- The derivatives of the reliability function: 
 

 By differentiating the reliability function given in (1-5) we get with respect to θ 
and β in turn we get: 
 
A-3-1- The first derivatives: 
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A-3-1-The second derivatives:  
 

)1()(
2

2

11 θβθβθ
β +−−=

∂
∂

= ttftRR      

( )


















+
Ψ

+−−−=
∂∂

∂
=

ββ
β

β
θθ

θββθ
β 1

)1(
ln1)ln()(

22

2

12 tttftRR  

 





































 Ψ
−

Ψ ′
−

+

2

22

)1()1(
)1(

β
β

β
β

β
R                                                                                            (A-6) 

)1(

)1(2
ln)1(211ln)(ln

3

21

22

2

22

β
β

β
βθ

ββ
θ

βββ
β

Γ









−Ψ

+















+−Ψ+








−−−=

∂
∂

=
II

tttfttRR

Where: 

∫ −=
βθ

β
t

x dxexxI
0

1

1 )ln( ,                                                dxexxI
t

x∫ −=
βθ

β

0

1
2

2 ))(ln(  

 
 
 
 

 24



REFERNCES 
 
Abramowitz, M. and Stegun, I.R. (1970). Handbook of Mathematical functions, with  
                 formulas, graphs, and mathematical tables. Dover Publications, Inc.,New  
                 york. 
Frank, H. and Althoen, S.C., (1994). Statistics concepts and applications. Cambridge   
                 University Press, Great Britain.    
Glaser, R.E. (1980). Bathtub and related failure rate characterization. J. Amer.  Statistical  

                 Assoc, Vol.75, 667-672. 

Gupta, R.C. and Akman, H.O. (1995). On the reliability studies of a weighted inverse 

                Gaussian model. Journal of Statistical Planning and Inference 48, 69-83. 

Gupta, R.C. and Kirmani, S. N. V. A. (1990). The role of weighted distribution in  

                stochastic modeling. Commun. Statist. –Theory Meth., 19(9), 3147-3162.  

Gupta, R. C. and Tripathi, R.C. (1990). Effect of length-biased sampling on the modeling  

                 error. Communication in statistics –Theory Meth., 19(4), 1483-1491. 

 Gupta, R. C. and Tripathi, R.C. (1996). Weighted bivariate logarithmic series  

                distributions. Commun. Statist. –Theory Meth., 25(5), 1099-1117. 

Gradshteyn, I.S. and Ryzhik, I.M. (1965): Table of integrals, series, and products.  

                 Academic press Inc., New York and London. 

Jain, K., Singh,H. and Bagai, I. (1989). Relations for reliability measures of weighted  

                distributions. . Commun. Statist. –Theory Meth., 18(2), 4393-4412.  

Kapur, J.N. and Saxena, H.C. (2001). Mathematical statistics, 20th edition, S. Chand &  

                Company LTD New Delhi, India, reprint (2003). 

Khatree, R. (1989). Characterization of Inverse-Gaussian and Gamma distributions  

              Through their length-biased distributions. IEEE Transactions on Reliability,  

               38(5), 610-611. 

Lindley, D.V., (1980).Approximate Bayesian Methods. Trabojos de Estadistica, Vol.31 

                223-245. 

Olyede, B.O. and George, E.O.(2002). On stochastic Inequalities and comparisons of 

                 reliability measures for weighted distributions. Mathematical Problems in 

                 Engineering. Vol.8, 1-13. 

Patill, G.P. (2002). Weighted distributions. Encyclopedia of Environmetics, Vol.4, 2369- 

                  2377 Johon Wiley  & Sons.   

 25



 26

Patill, G.P. and Rao,C.R. (1978). Weighted distributions and size-biased  sampling with 

               application to wildlife populations and human families. Biometrics,34,179- 189. 

Patill, G.P. and Rao,C.R. and Ratnaparkhi, M.V. (1986). On discrete weighted 

                distributions and their use in model choice for observed data. . Commun.      

                Statist. –Theory  Meth., 15(3), 907-918. 

Stacy, E.W. (1962): A generalization of the gamma distribution, Ann. Math. Stat.,  

                Vol.33, 1178-1192.  

 


