Parameter estimation for first-order superdiagonal bilinear time series: An algorithm for maximum likelihood procedure

by Bouzaachane Khadija, Harti Mostafa, Benghabrit Youssef.

Abstract: Thanks to their possible application to a wide variety of fields including signal, demography, economics..., the bilinear time series models have acquired a great importance in the statistical literature. This paper deals with the design of a new algorithm for estimating the parameters of a particular bilinear time series model. This iterative algorithm is based on maximum likelihood method and Kalman filter algorithm. To demonstrate the efficiency of our algorithm, series of simulations were performed.

Key Words: First-order subdiagonal Bilinear Model, Kalman Filter, Pseudo Maximum Likelihood

Authors:
Bouzaachane Khadija, bouzaachane@netcourrier.com
Harti Mostafa, mharti@fsdmfes.ac.ma
Benghabrit Youssef, you_benghabrit@yahoo.fr

Editor: Peiris Shelton,shelton@maths.usyd.edu.au

READING THE ARTICLE: You can read the article in portable document (.pdf) format (153031 bytes.)

NOTE: The content of this article is the intellectual property of the authors, who retains all rights to future publication.

This page has been accessed 2364 times since July 26, 2006.


Return to the InterStat Home Page.